91 research outputs found

    Structural phase transition in IrTe2_2: A combined study of optical spectroscopy and band structure calculations

    Full text link
    Ir1x_{1-x}Ptx_xTe2_2 is an interesting system showing competing phenomenon between structural instability and superconductivity. Due to the large atomic numbers of Ir and Te, the spin-orbital coupling is expected to be strong in the system which may lead to nonconventional superconductivity. We grew single crystal samples of this system and investigated their electronic properties. In particular, we performed optical spectroscopic measurements, in combination with density function calculations, on the undoped compound IrTe2_2 in an effort to elucidate the origin of the structural phase transition at 280 K. The measurement revealed a dramatic reconstruction of band structure and a significant reduction of conducting carriers below the phase transition. We elaborate that the transition is not driven by the density wave type instability but caused by the crystal field effect which further splits/separates the energy levels of Te (px_x, py_y) and Te pz_z bands.Comment: 16 pages, 5 figure

    Bulk properties of the van der Waals hard ferromagnet VI3

    Get PDF
    We present comprehensive measurements of the structural, magnetic, and electronic properties of layered van der Waals ferromagnet VI3 down to low temperatures. Despite belonging to a well-studied family of transition-metal trihalides, this material has received very little attention. We outline, from high-resolution powder x-ray diffraction measurements, a corrected room-temperature crystal structure to that previously proposed and uncover a structural transition at 79 K, also seen in the heat capacity. Magnetization measurements confirm VI3 to be a hard ferromagnet (9.1 kOe coercive field at 2 K) with a high degree of anisotropy, and the pressure dependence of the magnetic properties provide evidence for the two-dimensional nature of the magnetic order. Optical and electrical transport measurements show this material to be an insulator with an optical band gap of 0.67 eV - the previous theoretical predictions of d-band metallicity then lead us to believe VI3 to be a correlated Mott insulator. Our latest band-structure calculations support this picture and show good agreement with the experimental data. We suggest VI3 to host great potential in the thriving field of low-dimensional magnetism and functional materials, together with opportunities to study and make use of low-dimensional Mott physics

    Vortex Core Structure and Dynamics in Layered Superconductors

    Full text link
    We investigate the equilibrium and nonequilibrium properties of the core region of vortices in layered superconductors. We discuss the electronic structure of singly and doubly quantized vortices for both s-wave and d-wave pairing symmetry. We consider the intermediate clean regime, where the vortex-core bound states are broadened into resonances with a width comparable to or larger than the quantized energy level spacing, and calculate the response of a vortex core to an {\em a.c.} electromagnetic field for vortices that are pinned to a metallic defect. We concentrate on the case where the vortex motion is nonstationary and can be treated by linear response theory. The response of the order parameter, impurity self energy, induced fields and currents are obtained by a self-consistent calculation of the distribution functions and the excitation spectrum. We then obtain the dynamical conductivity, spatially resolved in the region of the core, for external frequencies in the range, 0.1\Delta < \hbar\omega \lsim 3\Delta. We also calculate the dynamically induced charge distribution in the vicinity of the core. This charge density is related to the nonequilibrium response of the bound states and collective mode, and dominates the electromagnetic response of the vortex core.Comment: Presented at the 2000 Workshop on ``Microscopic Structure and Dynamics of Vortices in Unconventional Superconductors and Superfluids'', held at the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany (28 pages with 15 figures). Alternate version with higher resolution figures: http://snowmass.phys.nwu.edu/~sauls/Eprints/Dresden2000.htm

    Charge Induced Vortex Lattice Instability

    Full text link
    It has been predicted that superconducting vortices should be electrically charged and that this effect is particularly enhanced for, high temperature superconductors.\cite{kho95,bla96} Hall effect\cite{hag91} and nuclear magnetic resonance (NMR) experiments\cite{kum01} suggest the existence of vortex charging, but the effects are small and the interpretation controversial. Here we show that the Abrikosov vortex lattice, characteristic of the mixed state of superconductors, will become unstable at sufficiently high magnetic field if there is charge trapped on the vortex core. Our NMR measurements of the magnetic fields generated by vortices in Bi2_{2}Sr2_{2}CaCu2_{2}O8+y_{8+y} single crystals\cite{che07} provide evidence for an electrostatically driven vortex lattice reconstruction with the magnitude of charge on each vortex pancake of 2\mathbf{\sim 2}x103e\mathbf{10^{-3} e}, depending on doping, in line with theoretical estimates.\cite{kho95,kna05}Comment: to appear in Nature Physics; 6 pages, 7 figure

    Spin-lattice instability to a fractional magnetization state in the spinel HgCr2O4

    Full text link
    Magnetic systems are fertile ground for the emergence of exotic states when the magnetic interactions cannot be satisfied simultaneously due to the topology of the lattice - a situation known as geometrical frustration. Spinels, AB2O4, can realize the most highly frustrated network of corner-sharing tetrahedra. Several novel states have been discovered in spinels, such as composite spin clusters and novel charge-ordered states. Here we use neutron and synchrotron X-ray scattering to characterize the fractional magnetization state of HgCr2O4 under an external magnetic field, H. When the field is applied in its Neel ground state, a phase transition occurs at H ~ 10 Tesla at which each tetrahedron changes from a canted Neel state to a fractional spin state with the total spin, Stet, of S/2 and the lattice undergoes orthorhombic to cubic symmetry change. Our results provide the microscopic one-to-one correspondence between the spin state and the lattice distortion

    Dynamical mean-field approach to materials with strong electronic correlations

    Full text link
    We review recent results on the properties of materials with correlated electrons obtained within the LDA+DMFT approach, a combination of a conventional band structure approach based on the local density approximation (LDA) and the dynamical mean-field theory (DMFT). The application to four outstanding problems in this field is discussed: (i) we compute the full valence band structure of the charge-transfer insulator NiO by explicitly including the p-d hybridization, (ii) we explain the origin for the simultaneously occuring metal-insulator transition and collapse of the magnetic moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of plane-wave pseudopotentials which allows us to compute the orbital order and cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a general explanation for the appearance of kinks in the effective dispersion of correlated electrons in systems with a pronounced three-peak spectral function without having to resort to the coupling of electrons to bosonic excitations. These results provide a considerable progress in the fully microscopic investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for publication in the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom

    Concurrent transition of ferroelectric and magnetic ordering near room temperature

    Get PDF
    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic N&#233;el temperature of the multiferroic compound BiFeO3 is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications. &#169; 2011 Macmillan Publishers Limited. All rights reserved.open435

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    CHARGED VORTICES IN HIGH-TEMPERATURE SUPERCONDUCTORS

    No full text
    It is argued that in the mixed state of a type II superconductor, because of the difference of the chemical potential in a superconducting versus normal state, the vortex cores may become charged. The extra electron density is estimated. The extra charge contributes to the dynamics of the vortices; in particular, it can explain in certain cases the change of the sign of the Hall coefficient below T-c frequently observed in the high temperature superconductors
    corecore